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TESTS FOR STRUCTURAL CHANGE
IN COINTEGRATED SYSTEMS

BYEONGSEON SEO
University of Rochester
and
Soongsil University

This paper considers tests for structural change of the cointegrating vector and the
adjustment vector in the error correction model with an unknown change point. This
paper derives new tests for structural change, which are applicable to maximum
likelihood estimation. Our tests for structural change of the cointegrating vector
have the same nonstandard asymptotic distributions that have been found by Hansen
(1992a, Journal of Business and Economic Statistics 10, 321-335). In contrast, the
tests on the adjustment vector have the same asymptotic distributions that have been
found by Andrews and Ploberger (1994, Econometrica 62, 1383-1414) for models
with stationary variables. Asymptotic critical values are provided.

1. INTRODUCTION

This paper considers tests for structural change of the cointegrating vector and
the adjustment vector in the error correction model (ECM) with an unknown
change point. The purpose is to develop the appropriate test statistics and the
associated distribution theory in cointegrated systems. It is of interest and use
because many economic studies have questioned the stability of long-run equi-
librium relationships. Particularly, there is vast literature on the stability of the
money demand equation, including Lucas (1988) and Stock and Watson (1993).

The stability of long-run relationships can be statistically assessed by testing
structural change of the cointegrating vector between the variables. Some tests of
this form have been proposed by Hansen (1992a) and Quintos and Phillips (1993),
which use the fully modified estimator of the cointegrating vector. These tests are
not applicable to maximum likelihood estimation and thereby exclude most po-
tential applications. This paper fills this gap in the literature by deriving new tests
based on the maximum likelihood estimator (MLE) from the ECM.

The distribution theory of the cointegrating vector in the Gaussian ECM has
been developed by Johansen (1988, 1991). We use the same model, but we as-
sume that the cointegrating vector can be identified with a normalization condi-
tion. We define Lagrange multiplier (LM) statistics for structural change in the
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cointegrating vector and the adjustment vector by using the efficient score. Be-
cause the LM statistics do not require sequential estimation, our tests are com-
putationally easy and fast.

Conventional LM statistics are defined with respect to a known break point,
but we relax this constraint by allowing an unknown break point. In this case,
classical optimality theory does not hold because a nuisance parameter exists
only under the alternative hypothesis. To deal with this difficulty, alternative
testing procedures have been suggested by Davies (1977, 1987), King and Shively
(1993), Andrews (1993), and Andrews and Ploberger (1994). We define average
(Ave-LM), exponential average (Exp-LM), and supremum (Sup-LM) LM sta-
tistics based on the optimality arguments of Andrews (1993) and Andrews and
Ploberger (1994).

This paper finds that the tests for structural change of the cointegrating vector
have the same nonstandard asymptotic distributions that have been found by
Hansen (1992a), although Hansen (1992a) used the fully modified estimator. In
contrast, the tests on the adjustment vector have the same asymptotic distribu-
tions that have been found by Andrews and Ploberger (1994) for models with
stationary variables.

This paper also extends the stability tests to models with deterministic trends.
We consider three models: (1) no drift, (2) no trend in the data-generating process
(DGP), and (3) trend in the DGP. Asymptotic critical values of Ave-LM, Exp-
LM, and Sup-LM tests are provided for each model.

There are other related papers by Hansen and Johansen (1993), Quintos (1993),
and Quintos (1997). Hansen and Johansen (1993) and Quintos (1993) considered
the likelihood ratio method for detecting structural change by recursive estima-
tion of the cointegration space. Quintos (1997) developed the parameter stability
tests using the Wald criterion. All these authors use sequential estimation meth-
ods; hence, they are complementary to the result of this paper.

We denote —? as convergence in probability and = as weak convergence with
respect to the uniform metric. The expression B(s) = BM(Q) represents a Brown-
ian motion with long-run variance Q. Also, [-] is the integer operator, tr A is the
trace of matrix A, and vec(-) is the column-stacking operator.

The next section explains the model and defines the LM statistics for structural
change of the cointegrating vector and the adjustment vector. Section 3 explores
the asymptotic distribution theory for these tests. Models with deterministic trends
are considered in Section 4. Section 5 deals with simulation results of the asymp-
totic critical values. Small sample Monte Carlo experiments are also done to find
the power and the size distortion of our tests. An empirical application to the
money demand equation is made in Section 6.

2. THE MODEL AND PRELIMINARY RESULTS

Consider a p-dimensional time series x, generated by the ECM that allows one-
time structural change in the cointegrating vector as follows:
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I ' -1
Ax, = a(B Y Er[m_] . 1}>x,_1 + ;=21 LAx,_; + u, @
where @ is a p X r full column rank matrix, 8 and 8 are (p — r) X r matrices, { - }
is the indicator function, and i, is independent and identically distributed (i.i.d.)
with mean zero and covariance matrix 2.

We assume that the cointegration rank is known and equals r. Therefore, if we
denote equation (1) as IT(L)x, = u,, then the rank of IT1(= —II(1)) is r.

Our model implicitly assumes a normalization condition of the cointegration
space. According to our normalization, x, can be partitioned into 7-dimensional
x1, and (p — r)-dimensional x,,. This normalization is a special case of repre-
senting the ECM. From this representation, the cointegrating vector can be iden-
tified. The same normalization was used by Phillips (1991) in his triangular
representation. In principle, any ordering of x,,,x,, may be possible if the parti-
tioned matrix of cointegrating vectors corresponding to x, is nonsingular and x,,
is not itself cointegrated. In some cases we can specify the normalization accord-
ing to economic theory. For example, in a money demand equation, if we set x;,
to be real balances and x,, to be real income and the nominal interest rate, then we
can interpret the cointegrating vector 3 as the long-run income elasticity and the
interest semielasticity of money demand.

We define the cointegrating relationship (or the long-run relationship) as

w, =xy + (B +6{t= [nT] + 1'%, 2)

which is stationary (or 1(0)).

Our definition of the cointegrating relationship is different from that of Engle
and Granger (1987) because we allow one-time structural change in the cointe-
grating vector at the break point 7. This is new and unconventional. Our model
can be reduced to the conventional model if the cointegrating vector is stable;
therefore, the conventional model is a special case of our model.

The break point 7 intersects two subsamples, ¢ = 1,2,...,[n7] and t = [n7] +
1,...,n. Hence, the corresponding cointegrating vectors are 3 and 8 + §, respec-
tively. We treat 7 as fixed until we define optimal tests for unknown 7.

The null and alternative hypotheses for the stability of the cointegrating vector
B are

HE:5=0 and HP:5#0.
Assumption 1.

(@ TE€7*and 7* =[71,7] C (0,1). -
) {u} ~i.id. (0,3).

We define the parameter vector
0 = vec(4, B,a,I,3) € O,
where
= (F]I,Fi,...,l—‘[l_l)l.
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We also define the o-field F, generated by x,_; for i = 1,2,.... The log-
likelihood function, with the auxiliary condition that u, is normally distributed, is
given by

[n7] n

‘cn(ovT) = E lt(O,B’avF;E) + E lt(a’ﬁ’avr’2)9 (3)
=1

t=[nr]+1

where

1,(0) = _% loglzl - %tru,(o)u,’(o)z‘l,

and u, = u,(0)Ain equation (1).
We denote 6(7) (= 6,(7)) as the unrestricted MLE of 8 for known 7 € 7*. That
1s,

o(r) = argmax L,0,7). )
=]
If we denote (= 6,) as the restricted MLE of 6, then
6 = argmax L, (0, 7). 5)
0€0,6=0

Our tests use the restricted MLE. Methods to compute the restricted MLE 6
have been suggested by Ahn and Reinsel (1988) and Box and Tiao (1977).
The first-order conditions of the unrestricted likelihood function are given by

L0, &

X3 837 =0, 6

98 t=[n2‘r]+l 2—-1U; a (6)
a£r1(697—) “ AR —1 A

9B = F21x2t—lut2 a=0, @)
oL, (6,7) o aaed

ad’ - lewt~1ut2 - 07 (8)
and
aL, (6, .
——(77—) => Ax, ;#4371 =0, fori=12,...,1—1, 9

arli t=1

where #, = u,(0) in equation (1) and W, = x;, + (B + 8{t=[nr] + 1)'x,,.
We denote #, = u,(#) in equation (1), and z, = (Ax/,Ax;_1,...,Ax/_;45)".
Let

[n7]
M) = (a'i"‘ ®@ntY Rlz,(r)a;>vec(1),
=1

where

[n7] [n7] -1
Rip(7) = X301 — 2 X2—124-1 2 Z—1%6-1 Zr—1-
t=1 =1
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The restricted MLE 4 satisfies the first-order conditions except equation (6).
We call A2(r) the Lagrange multiplier (or the score), which is based on equation
(6) and an asymptotically negligible term. The score function uses the partial
sum, for example, S, zl_, instead of the grand sum because the former can
be properly extended to the model with deterministic trends.

We define the LM statistic for the null hypothesis H5 as follows:

LM?(r) = A% (7)[Est. Var(A2(r))] A5 (7).
If we use the asymptotic results in Section 3, we have the following:

[nr]
Xo(r) = (a’E‘l ®n'Y Rm(f)u{) vec(I)
=1

- (a'z_l ® S112(1)S11(D) ! i Rm(D“r’) vec(I) + 0,,(1),
=1

where S;1,(1) = n~! EEZJRlzt(T)Rm(T)' and Squef*o,,,(l) = Op(l)-
Thus, the estimated variance of the score )l’,f (7) is given by
Est. Var(Ao(r)) = @' $7'@ ® Vy1,(7),
where Vi1, (1) = n7'811,(1) — n7'8114(1)811,(1) 7 S1y,(r) and £ =
n S .
Let

[n7]
gf@r)=n"" 21 Ry, (7)8,, (10)
=

where 7, = (@'S~'a) V¥ a'S™'a,.

If we neglect asymptotically negligible terms, the LM statistic for HP against
H? is given by
LM? (1) = trg? (0,)[Virn(D)] g7 (@,7). (an

The LM statistic is a simple function of the data and the restricted MLE 4.
Because we can use existing estimation methods, it is computationally easy and
fast. In contrast, Wald statistics and likelihood ratio statistics for this model re-
quire sequential estimation, which is much more computationally burdensome.

2.1. Stability of @

Consider the tests for structural change of the adjustment vector a for a known
break point 7 in the equation

-1

I !
Ax, = (@ + e{t = [n1] + 1})<ﬁ>x,_1 + D T Ax,; + u,. 12)
i=1

In this case, the null and the alternative hypotheses are
Hg:e=0 and HE:e#0.
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The parameter vector 8 is now defined as 6 = vec(e, B,«,T,3), and the log-
likelihood function is given by

[n7]
L£0,7) = 2 1,(0,8,a,T,3) + 2 I,(e,B,a,T,3),

t=[n1]+1

where

1,(6) = — log|=] — 3 tru,(8)u;(0)3 7",

and u, = u,(0) in equation (12).

Note that we have the same restricted MLE  as before. The first-order condi-
tions of the unrestricted likelihood function are given by equations (7)—(9), and
oL, (6,7 o A
Lal0r) _ > W @3St =0. 13

o€’ t=[nr]+1

The restricted MLE  satisfies equations (7)—(9), but it does not satisfy equé—
tion (13). We have the following Lagrange multiplier, which is based on equation
(13) and an asymptotically negligible term:

[n7]

Ay(r) = (i" ®n 2% EZ,(T),z;> vec(I),
=1

where

[n7] [n7] 1
Ry () = W,y — 2 Wi-121-1 (2 Z-121- 1> Zi-1, and W, = xy, + B'xy;.
t=1
We define the LM statistic for the null hypothesis H§ as follows:

LM%(7) = X2 (7)[Est. Var(A%(7))] "1 A%(7).

To estimate the variance of the score A%(7), we use the following asymptotic
result:
[n7]
n~V? 2 th(’l’) i

[n7]

— n—l/2 2 R2 (T)ut S22n(7')S22,,(1)_1n_1./2 2 E2t(1)u; + op'r(l)’
=1
where S,,,(t) = n~! SRy (1) Roy ().
The estimated variance of the score A%(7) is given by
Est. Var(A5(7)) = £7' @ Vi, (7),

where V,(7) = S20,(T) = 822,(7)822,(1) ' S224(7).
Let

[n7]

gx(b,7) =n"1? 2 Ry (ma,SV2 14)
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The LM statistic of the tests for g against H¢ is given by

LMZ(r) = tr g% (8,7) [V, (1)] "182(6,7). 15)

2.2. Joint Stability of 8,a
Now, we consider the tests of the one-time structural change in 8 and « for a

known break point 7 in the equation

Ax, = (a + e{t=[n7] + 1})

1 !
(ﬁ+suzmﬂ+1g“”
-1
+ > LAx,_; + u,. (16)
i=1

13

The null and the alternative hypotheses to test for structural change of 8 and a
jointly are

HES5=€e=0 and H{*:6+#0ore#0.

In this case, th_f: parameter vector is defined 8 = vec(d,¢, 8,a,I',%) and the re-
stricted MLE @ can be defined as before.

We define the LM statistic for the null hypothesis ’Hg “ as follows:

Aﬁ*(f))
Bay \ _
M“)<ﬁw'

To calculate the asymptotic variance of the score A5%(7), we use the following
asymptotic result:

[n7]
(,\B(T)> (a'z—l ®n! Z‘{ Rm(f)u,’) vec([)
“ - [nr]
A5(7) (2—1 ® no12 2 Ez;(ﬂ“;’) vee(l)
t=1

<a’2"' ® S11n (1) (S11, (1) 70! Zn:lRm(l)u{> vec([)

(2_1 ® S224(7)(S22,(1)) " 'n 12 éﬁz,(l)lt,’) vec(I)

+ 0,,(1).

From the asymptotic results in Section 3, n~1/2S,,(r) —? 0 uniformly in
T € 7% where Spp,(7) = n7! S R, () Ry, (7)". This result implies that the
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variance of the score A2*(r) is block-diagonal asymptotically. Thus, the LM sta-
tistic of HE* against H P is asymptotically equivalent to the simple sum

LM?%(r) = LM?(r) + LM2(7). a7

2.3. Unknown Break Point

We have defined the LM statistics for fixed 7. This is appropriate when 7 is
known to the econometrician. More typically in applied work, it is natural that the
break point 7 is thought to be unknown. In this case, the testing procedure is
nonstandard because a nuisance parameter 7 appears only under the alternative
hypothesis. Tests with specific optimality properties have been proposed by Davies
(1977, 1987), King and Shively (1993), Andrews (1993), and Andrews and
Ploberger (1994). We follow Andrews (1993) and Andrews and Ploberger (1994),
whose method is based on the weighted power criterion function with respect to
the randomized nuisance parameter.

If we assume that 7 lies in 7* = [7,7], then the optimal tests are defined as
follows:

~1

. 1 ;
Ave-LM}, = —— > LMi([#/n]),

-
Il
—_ I~

r—t
Exp-LM;, = log ( =

>, exp(LM([1/] )/2)),

I~

and
Sup-LM, = Max LM.([t/n]),
1€[1,1]

where t = [nr], f = [n7], and i = B,a, Ba.

Andrews and Ploberger (1994) proposed the asymptotically optimal test sta-
tistic that is a function of the concentration parameter c. Because the Ave-LM
statistic is defined with respect to ¢ — 0, the power is concentrated on the alter-
native that is near the null hypothesis. The Exp-LM statistic is defined with re-
spect to ¢ — oo, and so the power is concentrated on the alternative that is very far
from the null hypothesis. The power of the Sup-LM statistic is also concentrated
on the distant alternative hypothesis.

3. MAIN RESULTS

We use the following representation theorem (for proof, see Engle and Granger,
1987; Johansen, 1991).

THEOREM 1. (Granger—Johansen representation) Assume that the null hy-
potheses are valid, so that there is no structural change. We assume that x, is
integrated of order one under the null hypotheses. Suppose the cointegration
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relation holds, that is, I1 = ay’, where y = (I, B')', and « and 'y are p X r full
column rank matrices. If a, and vy, are p X (p — r) full column rank matrices
such that a a = 0 and y|y = 0, then the ECM can be represented by

(1
Ax, = C(L)u,,

with C(1) = y, (@, ¥(1)y,) ', where ¥(1) is the derivative of TL(L) for L = 1,
2

'
x = C(1) 21 u; + ®(L)u,,

where ®(L) = (C(L) — €(1))/(1 — L), and
3

w, = vy'x = y'®(L)u,.

Under the null hypotheses, the representation theorem implies that x, can be
decomposed into stochastic trends and a stationary component. The cointegration
matrix y eliminates the stochastic trends; hence, the cointegrating relationship is
stationary.

Typically, we define = as weak convergence on the space C[0,1] with re-
spect to the uniform metric. Here, we need to define weak convergence of the
projected sequence Riy,(7) = X3, — 25171] xzt—lzt'—l(EEZTl] Z-12i-1) " '2 1
Hence, we need = to denote weak convergence on C[0,1] Q) 7* with respect
to the uniform metric p(-,-), where

p(g;h) = sup |g(s,7) = h(s,7)],

selo,1],7e7
and || is a matrix norm. That is, |A| = (trA’A)"/2
Assumption 2.

(C) Eluolz < 0.
(d) 52, k%|Cy| < o0, where C(L) = ZiZo C L*
(e) supgeelf] < co.

We denote C,(1) as a partitioned matrix of C(1) that corresponds to x,,; hence
its dimensionis (p — r) X p.
LEMMA 1. Under the null hypotheses and Assumptions 1 and 2,

[ns]
nTV2 N u, = W(s), 18)
=1

[ns]
nTV2Y w, =y (1) W(s), 19)
t=1
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and
nTV2R 1y (1) = Co(1)W(s) = Wi(s), (20)
where W(s) = BM(3).

To show the main theorem, we use a weak convergence theorem of Hansen
(1992b).

LEMMA 2. Under the null hypotheses of no structural change and Assump-
tions 1 and 2,

[n7] T
n! 21 Ry (T)u; = f W, (s) dW'(s), (21)
= 0
[n7] T
n=? 21 Rz (T)R(7) = | Wa(s)W;(s) ds, (22)
= 0
and
[n7]
n™' Y Ry (1R (1) =P 70 (23)
=1

uniformly in T € 7%, where

[n7] [n7] -1

Ry, (7) = w,y — 2 W:~1Zt'—1<2 Z:~1Zf~1) -1y
=1 =1

and

Q = E(wow)) — E(woz0)(E(2020)) ™ "E(zow0).

To simplify the main theorem, we define the following standard Brownian
motions:

B, (s) ('3 'a) V¥ a'3 " W(s) I. 0
(Bxﬂ)==&cxnzcxnr“’cxnu«n)==m"(0 &ﬂ)
The tests for structural change of the cointegrating vector 8 have the following
property.
THEOREM 2. Under ’Hg and Assumptions 1 and 2,
LM (r) = tr F()”' [V(r) = V() V() "' V(D)) 'F(r)" = LM{ (), 249
where

F(r)? = F(r) = V(n)V()T'F (1),

Fir) = fo " B (s) dB}(s),
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and

V(r) = fOTBZ(s)Bé(s) ds.
Hence,

1
AveLMP = —— J LM} (r) dr,
T—T rer*

1
Exp-LM? = log (f_——r f exp(LM{ (7)/2) dT>,

er

and

Sup—LMf = Max LMf (7).

TET

Even though vec F(7) is distributed as mixed normal with covariance matrix
I ® V(r), F(r)? is not a Brownian bridge, as defined in the stationary case,
although it is still tied down. Hence, our asymptotic distributions are different
from those found by Andrews (1993) and Andrews and Ploberger (1994).

Because the distribution of LM{3 is chi-squared for a known 7, our tests for
structural change of the cointegrating vector are standard only if we know the
change point. Our distribution is the same as that found by Hansen (1992a),
although Hansen (1992a) used the fully modified estimator. To estimate efficient
scores, bias correction is needed because the least-squares estimator of the co-
integrating vector is not median-unbiased. However, this bias does not exist in
our model, which makes nonparametric estimation avoidable.

The distribution of our tests depends only on the number of parameters and the
admissible range of the break point. The empirical distribution and the associated
asymptotic critical values can be generated by simulation. These results are pre-
sented in Section 5.

On the other hand, our tests for structural change of the adjustment vector have
the same asymptotic distribution as in the stationary case, as we now show. We
define J(s) as a pr-dimensional standard Brownian motion, which is independent
of B,(s) and B,(s).

THEOREM 3. Under H§ and Assumptions 1 and 2,

LM(7) = . J(T)?' J(7)? = LM*(7), 25)

1
-

where J(1)? = J(7) — 7J(1).
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Also,

1
Ave-LM? = —— f LM*(7) dr,
T—T Jrer*

1
Exp-LMj; = log (1__—_—1-_— f exp(LM“(7)/2) dT),

€T

and
Sup-LM¢Z = Max LM“(7).
TET*

Here J(7)? is a standard Brownian bridge; hence, the distributions of tests for
structural change of the adjustment vector « are the same as those for stability
tests in stationary regressions. The distribution of the Sup-LM test has been found
by Andrews (1993), and those of the Ave-LM and the Exp-LM tests have been
found by Andrews and Ploberger (1994). Thus, tests for structural change of the
adjustment vector can be based on the empirical critical values provided in those
papers.

The joint test for structural change of 8 and a has the following asymptotic
distribution.

COROLLARY 1. Under HE® and Assumptions 1 and 2,
LMP%(r) = LM{(r) + LM*(7) = LM{*(7). (26)

Hence,

1
AVC—LM,I,3 ‘= P f LM{3 “(r) dr,
L Jrer*

Exp-LM?* = log( f exp(LM{*(7)/2) dr) ,
rer”*

T—7T

and
Sup-LM?* = Max LM?(7).
TET*

The proof comes from Theorems 2 and 3.

4. MODELS WITH DETERMINISTIC TRENDS

When a model has deterministic trends, the distribution theory changes depend-
ing on the detrending method. If we use demeaned or detrended data, then we
should use the corresponding distribution theory. This section considers two mod-
els: (1) no trend in the DGP and (2) trend in the DGP, although these two models
use the same ECM with drift. This section considers only tests for structural
change of the cointegrating vector. The distribution theory for structural change
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of the adjustment vector is invariant to the detrending method in the sense that the
detrending method only removes the deterministic trends. In contrast, the de-
trending method affects the stochastic trends of the integrated variables. The
distribution theory for joint stability is straightforward.

4.1. No Trend in the DGP

Suppose we have the following model that allows one-time structural change of
the cointegrating vector for a known break point 7:

I ! 1-1
Ax, = p + a<ﬁ + 8{t = [nr] + 1}>x,_1 + 1l",-Ax,.,- + u,. 27

We assume in this subsection that @', u = 0, which means that there is no trend
in the DGP. If we denote z; = (1,z,), then we have the following property.

LEMMA 3.

i=

1 T
1" V2R gy (7) = Wy (s) — - f W, (s) ds = W'(s,7), (28)
0

— [n7] ] -
where R1,() = X3,y — Ezz x2t—lz:—’1(zgr-l Zr12il) IZf—l-

This paper uses the score function based on the partial sum, which works prop-
erly in the model with deterministic trends. On the other hand, the score function
based on the grand sum entails a nuisance term, and the variance estimator of the
score function does not correspond to that derived from the Hessian matrix in the
model with deterministic trends.

Whereas demeaned Brownian motions are typically defined with respect to the
grand mean > Wa(s) ds, we use the partial mean process 1/7 fg W,(s) ds. Thus,
W' (s,7) is an array with argument (s, 7), with s = 7. For notational economy, we
denote W,'(1) = W5'(s,7). The following lemma can be verified analogously to
that of Lemma 2 if we use the weak convergence theorem by Hansen (1992b).

LEMMA 4. Under Hg , &' u =0, and Assumptions 1 and 2,

[n7] T
n"‘ZIRTz,(T)u,’: f Wy (1) dW'(s),
t= 0

and

[n7] T
n=? 21 R (T)RY(7) = W ()W, (7) ds.
1= 0

Under the null hypothesis of no structural change, the model can be esti-
mated by existing methods. Suppose (i, &, B,T,3) is estimated by those meth-
ods. We denote #, = u,(ji,&,B,T) for u, in equation (27). We also denote
Sia(r) = n7' SR (MR3(r) and V() = n7IST, (1) — n7USh,(r)
Sikln(l)_lsfln(q-)'
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The LM statistic of the tests for structural change of the cointegrating vector in
this model can be defined

LMy (r) = tr g2 (0,7)[Viin(7)] ~'8"(0,7), (29)
where gf*(8,7) = n~ SR, (7)5! and 5, = (&@'3 ‘@) 2 &@'S 14,
LEMMA 5. Under ’Hg ,a) p =0, and Assumptions 1 and 2,
LM;"(7) = w F*(x)" [V*(r) = V(@) V(1) V()] 'F*(7)” = LM5 (),
(30
where

F*(r)" = F*(r) - V*(n)V*()'F*(1),

W@=Lﬁmmw@x

Vi(r) = J B3 (s,7)B;'(s,7) ds,
0

and

T

1
B3(s,7) = B,(s) — ;j B,(s) ds.
0
Hence,

" 1
Ave-LMP* = —— f LM% (7) d,
TTT reT*

1
Exp-LM?* = log(q__—-_——q_ f . exp(LMZ%(7)/2) dT>,

= eT

and
Sup-LM?* = Max LM5 (7).
€T

The proof is analogous to that of Theorem 2. Its distribution is based on the
array of demeaned Brownian motions with respect to the partial mean process.

4.2. Trend in the DGP

If @} w is nonzero in equation (27), the DGP contains a linear trend. Because the
linear trend cannot be removed by demeaning only, the linear trend remains and
dominates stochastic trends. Hence, its distribution is different from that of no
trend in the DGP.
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LEMMA 6. Suppose (p —r) X (p—r— 1) matrixv, and (p — r)-dimensional
vector v satisfy v',v = 0, where v = C,(1) . The sample moments have the

following asymptotic properties:

B Sh(r)vs = 91 Co(1) j W)W (r) ds Cy(D)v,
0

n73 20 ST v = v C,(1) JOTW*(T)(S —1/2)dsv'y,
and

n 2SN = vy J: (s —71/2)%dsv'v.
We define

&@—%ﬂ&mm
s—7/2

B,(s,7) =

K

where B_(s) is the (p — r — 1)-dimensional standard Brownian motion.

THEOREM 4. Under H4 and Assumptions 1 and 2,
LM (7) = tr F()"' [V(r) — V() V) V(@) F(r)® = LME (),
where

Fio® = () - T V() FO),
P = [ B s

and

V(r) = J B, (s,7)B)(s,7) ds.
0
Hence,

1
AveLMP* = —— LM2(r) dr,
=) .
= TET

. 1
Exp-LMf = log(;__—: f ) exp(LMg (7)/2) dr),

(Shd

and

Sup-LM?* = Max LM¥ (7).
rET*

3y
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If a linear trend exists in the DGP, one stochastic trend is replaced with a
deterministic trend. When p — r = 1, B,(s,) is based only on the deterministic
trend s — 7/2. The asymptotic distribution theory is different from that of no
trend in the DGP although the same model is applied. To get the exact distribu-
tion, it is important to know the DGP correctly. If we know that the DGP contains
a linear trend, then we use the asymptotic critical values of the model of trend in
the DGP. The hypothesis o] p = 0 can be tested with the likelihood ratio method
by Johansen (1991) because the model of no trend in the DGP is a nested case of
the present one.

5. SIMULATION RESULTS

We have shown that our new tests for structural change have nonstandard distri-
butions. These distributions depend on the admissible range of change point and
the number of parameters. The empirical distribution tables are generated by a
sample size of 1,000 and 10,000 replications. The stochastic functional of multi-
variate Brownian motions and its optimal test statistics are constructed by the
Gauss random number generator on an IBM RISC-6000.

The admissible range of change point is symmetrically set at [0.05,0.95],
[0.15,0.85], and [0.25,0.75]. As we know the range more precisely, the test has
more power because it is closer to the classical test. When we have no informa-
tion on the structural change, a wider range test captures any possible structural
changes. Because our model generally contains many parameters, the admissible
range is limited even with a parsimonious specification. Hence, the choice de-
pends relatively on the availability of prior information and the number of usable
observations.

InTable 1, the asymptotic critical values of the Ave-LM test for structural change
of the cointegrating vector and joint stability are provided. Here P and r denote
the number of variables and cointegration rank respectively. The admissible
change points are given symmetrically. For example, 7 = 0.15 indicates that 7 €
[0,15,0.85]. As 7 increases, asymptotic critical values of the Ave-LM testincrease.
When the model of trend in the DGP is used, the critical value of LM3B withp =2
and r = 1 changes from 2.48 to 2.73 as 7 moves from 0.15 to 0.25.

Asymptotic critical values of the Exp-LM test are given in Table 2, and those
of the Sup-LLM test are in Table 3. Asymptotic critical values of these tests gen-
erally decrease as the admissible range of the change point becomes narrow. The
asymptotic critical values do not vary much among different models. The model
of trend in the DGP has generally smaller Ave-LM and Exp-LM critical values.
However, critical values of Sup-LM tests are higher in this model.

The number of coefficients of « is larger than that of 8 because of normaliza-
tion. Therefore, the critical values of the tests for joint stability largely depend on
those of the stability of a.
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TaBLE 1. Asymptotic critical values for Ave-LM?, Ave-LM#*

T 10% 5% 1%  10% 5% 1% 10% 5% 1%
p=2r=1
Ave-LM#? Ave-LM? Ave-LM%
25 220 296 475 223 298 474 210 273 428
A5 207 271 432 209 271 433 195 248 385
05 192 247 385 195 245 386 180 225  3.37
Ave-LM?* Ave-LM5* Ave-LM5*
25 534 646 895 533 640 885 529 633  8.82
15 509 602 834 507 608 822 500 597 8.2
05 486 569 7.64 481 570 756 478 559  7.40
p=3r=1
Ave-LM? ‘ Ave-LM? Ave-LM?
25 392 488 722 382 478 726 373 465 691
A5 369 459 657 364 448 646 351 432 6.26
05 347 425 587 345 416 579 331 401 578
Ave-LM?® Ave-LM5® Ave-LM5*
25 812 947 1252 805 935 1241 797 933 1207
A5 779 8.89 1146 771 883 1144  7.68 874 11.30
05 742 840 1055 738 830 1061 737 827 1038
p=3,r=2
Ave-LM? Ave-LM? Ave-LM?
25 382 478 712 376 472 697 365 450  6.54
A5 359 448 646 357 436 619 342 415 581
05 341 414 578 337 403 570 323 380 519
Ave-LMP® Ave-LM5* Ave-LM5*
25 1197 1363 1692 1190 1352 1662 11.85 1337 16.87
A5 1154 1301 1598 11.50 1293 1573 1140 1277 1577
05 11.13 1236 1489 11.08 1232 1474 1098 1222 14.64
p=4r=1
Ave-LM? Ave-LM% Ave-LM5
25 538 646 9.6 532 647 883 522 624 853
15 510 605 843 509 602 805 498 58 795
05 484 565 778 485 563 735 475 548 123
Ave-LM%{* Ave-LM5* Ave-LM5®
25 1059 12.17 1548 1066 12.09 1537 1052 12.02 1551
A5 1021 11.66 1443 1022 1156 1441 10.16 1144 14.33
05 988 11.02 1342 979 1094 1331 972 1091 13.30

(continued)
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TABLE 1. (continued)
p=4,r=2
Ave-LM#? Ave-LM? Ave-LM?
25 663 790 1053 671 786 1054 652 771 1040
15 635 745 992 637 7137 976 624 7117 943
05 605 696 912 609 693 912 592 672  8.68
Ave-LMP* Ave-LMZ* Ave-LMA*
25 1676 18.64 2246 1670 1845 2245 1671 1847 22.02
15 1623 17.90 2132 1618 1775 21.11 16.19 17.68 20.72
05 1569 17.15 20.03 1559 17.05 19.81 1570 16.90 19.72
p=4r=3
Ave-LM? Ave-LM? Ave-LM%?
25 525 627 868 528 638 863 502 600 791
15 499 589 804 497 600 793 474 555 115
05 473 552 726 474 559 724 447 517 651
Ave-LMP* Ave-LMZ* Ave-LMA*
25 2043 2216 2634 2035 2212 2625 2023 2209 2593
A5 1977 2142 2494  19.67 2141 2491 1958 2125 2474
05 1915 2062 23.60 19.04 20.58 23.68 19.02 2047 23.58
p=5r=1
Ave-LM? Ave-LM% Ave-LM?
25 670 800 1064 671 798 1054 670 791 10.68
15 649 752 988 642 750 971 639 747 998
05 616 708 911 613 7.03 900 607 7.01 912
Ave-LM?* Ave-LM5* Ave-LM5*
25 1323 1496 1850 1324 1496 1826 1326 14.87 18.29
A5 1273 1431 1742 1277 1422 1722 1273 1427  17.18
05 1226 1355 1636 1228 1352 1618 1222 13.60 16.04
p=5r=2
Ave-LM? Ave-LM# Ave-LM?
25 930 1079 1355 928 1074 13.69 930 1076 13.93
A5 899 1025 1276 888 1020 1277 891 10.18 12.82
05 861 970 1187 850 959 1197 856 9.61 11.89
Ave-LM?* Ave-LM5® Ave-LM5*
25 2151 2352 27.67 2151 2356 27.69 2154 2344 2748
15 2086 2274 2639 20.84 22772 2634 2085 2257 2623
05 2022 21.81 25.07 2022 21.82 2497 2026 21.67 24.91

(continued)
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TABLE 1. (continued)

p=5r=3

Ave-LM# Ave-LM5 Ave-LM%
25 934 1066 1353 933 1064 1329 926 1052 13.40
15 898 10.16 12,60 895 10.16 1252 885 998 12.60
05 860 9.67 1180 854 958 1170 847 945 11.78
Ave-LM?P® Ave-LM5* Ave-LM5®
25 2731 2946 3413 2727 2949 3391 2723 2956 34.17
A5 2664 2860 3277 2664 28.61 3260 2660 28.64 32.61
05 2597 2766 3127 2591 27.65 3131 2589 27.70 31.03

p=5r=4

Ave-LM? Ave-LM% Ave-LM?
25 656 7.66 1034 669 7.84 1045 639 741  9.62
A5 622 723 944 637 134 952 605 690 881
05 597 687 881 607 693 885 576 651 815
Ave-LM?* Ave-LM5* Ave-LM5“
25  30.57 32.82 3728 3055 3293 3759 3043 3282 37.33
A5 29.87 3196 3592 2992 3207 36.19 2975 31.80 3597
05 29.15 3095 3461 2921 31.00 34.64 29.05 30.84 34.52

5.1. Power

Suppose we have the following local alternative hypothesis:
HE: 8, = d/n,

where 6, = & in equation (1).
The asymptotic power function is driven by the Lagrange multiplier under the
local alternative hypothesis. This can be defined alternatively as follows:

8@ =n" 3 Ryu10-D

t=[n7]+1

n
— 1 '
=n ( 2 X2p—1V¢

t=[nr]+1

-1 n

n n
- X x2z~1xéx—1<2x2r~1x2x—1> 2x2r—lutl)+op(1)
=1

t=[n7]+1 =1

uniformly in 7 € 7%, where Ry, (1-7) = x5 — Zipnr+1X2-12i1
n -1
(2r=[m']+l Z-121-1) " ' Z41.
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TABLE 2. Asymptotic critical values for Exp-LM#, Exp-LM#“
T 10% 5% 1% 10% 5% 1%  10% 5% 1%
p=2r=1
Exp-LM# Exp-LM% Exp-LM5
25 148 201 335 150 202 332 149 199 327
A5 149 202 333 150 202 333 150 201 3.28
05 151 200 322 152 205 332 153 202 322
Exp-LM{* Exp-LM5* Exp-LM5*
25 345 419 579 343 418 580 347 421 5.87
15 354 426 587 351 425 585 355 426 588
05 360 432 603 360 434 596 364 431 6.01
p=3r=1
Exp-LM/ Exp-LM% Exp-LM}
25 254 326 471 254 317 477 252 319 471
A5 259 330 474 260 325 479 256 324 481
05 263 329 470 264 332 472 261 328 479
Exp-LM?* Exp-LM5* Exp-LM5*
25 513 602 816 506 599 803 510 603  7.89
15 526 615 819 521 613 811 525 613 798
05 541 627 834 541 630 821 542 627  8.16
p=3r=2
Exp-LM/ Exp-LM5 Exp-LMj
25 254 320 476 250 319 476 257 328 473
15 259 321 488 255 319 478 263 331 4.75
05 264 326 487 260 324 476 268 332 467
Exp-LM{* Exp-LM5* Exp-LM5*
25 748 851 1066 745 849 1054 747 853  10.62
15 767 864 1097 766 863 1081 767 873  10.79
05 784 884 11.15 783 878 11.06 789 8.86  11.06
p=4r=1
Exp-LM/ Exp-LM5 Exp-LM5
25 347 417 602 343 417 574 339  4ll 5.70
15 353 421 599 352 418 579 348 420 574
05 360 432 598 362 428 592 358 425 579
Exp-LM{* Exp-LM5* Exp-LM%*
25 668 771 981 665 170 966 660 758 979
15 684 779 1004 685 781 968 681 7.87  9.88
05 7.02 798 1006 7.04 799 983 699 791 9.97

(continued)
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p=4r=2
Exp-LM? Exp-LM5 Exp-LM5
25 430 514 707 432 514 689 435 515 7.5
A5 439 523 693 440 525 685 446 515 699
05 452 529 699 449 530 696 454 523 6.96
Exp-LM}* Exp-LM5* Exp-LM5®
25 1029 1149 1416 1031 1141 1404 1034 1143 13.89
A5 1055 1168 1420 1055 1159 1411 1056 11.62  14.12
05 1084 1192 1442 1075 11.83 1426 1077 11.81 14.28
p=4,r=3
Exp-LMf Exp-LMf Exp-LMf
25 347 423 582 346 427 590 354 426 585
A5 357 426 595 358 428 581 361 433 586
05 364 436 601 366 433 58 371 442 590
Exp-LM?* Exp-LM5“ Exp-LM5*
25 1237 1361 1634 1235 1351 1643 1236 13.61 1649
A5 1264 1393 1630 1262 13.73 1663 12.68 13.92 16.61
05 1302 1425 1665 1296 1417 1691 13.01 1427 16.91
p=5r=1
Exp-LM# Exp-LM% Exp-LM§
25 427 508 684 426 510 6.89 428 512 695
A5 438 514 694 438 518 690 437 520  7.08
05 449 524 698 447 526 682 449 532 7.1
Exp-LM{* Exp-LM5“ Exp-LM5*
25 819 928 1152 821 926 1148 820 928 11.65
A5 838 948 1151 843 944 1159 841 948 11.70
05 858 959 1170 857 956 1174 861  9.63 11.82
p=5r=2
Exp-LM? Exp-LM% Exp-LM}
25 590 682 880 594 682 895 595 693 898
15 603 69 894 607 693 903 609 7.02 9.05
05 619 705 89 618 7.01 911 626 715 9.1
Exp-LM{* Exp-LM5* Exp-LM5*
25 13.02 1436 1726 1311 1438 1723 13.12 1447 1699
A5 1338 1462 1742 1339 1462 17.50 1345 1471  17.22
05 1369 1491 1772 1368 1490 17.65 1376 1501 17.52

(continued)
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TABLE 2. (continued)

p=5r=3

Exp-LM? Exp-LM5 Exp-LM5
25 597 688 873 594 681 878 595 679 897
15 613 705 894 607 696 872 609 7.01  9.00
05 626 7.7 9.02 618 705 885 625 716  9.11
Exp-LM{* Exp-LM5* Exp-LM5*
25 1653 17.81 2082 1646 17.87 2072 1655 17.90 20.74
15 1686 18.17 21.09 1679 1820 2094 1687 1820 21.07
05 1721 1857 2143 17.17 1852 2135 1726 1857 21.26

p=5r=4

Exp-LM{ Exp-LM5 Exp-LM%
25 429 514 692 434 519 7.09 446 521  6.86
15 444 523 686 446 527  7.07 458 529  7.09
05 454 532 704 457 535 715 464 537 114
Exp-LM?* Exp-LM5* Exp-LM5*
25 1832 1992 2259 1828 19.84 2271 1842 19.90 2274
15 1876 2025 23.00 1878 2025 23.08 18.84 2027 23.00
05 1930 2070 2355 1925 2071 2383 1936 2071 23.63

The following lemma can be verified analogously to Lemma 2. We denote 7, as
the true break point.

LEMMA 7. Under ’Hf and Assumptions 1 and 2,

n

1 1
nt > x2,#1v,’:>f Wdei+<J W2W2’ds>ci(a’2‘1a)l/2.

t=[nr]+1 max (7,7g)
32)

The power of the test mainly comes from the decision error d. If 7, is known,
it removes uncertainty. This case generates the power envelope for the tests that
treat 7 as unknown.

Figure 1 depicts the asymptotic local power function of the tests for structural
change of the cointegrating vector from the following bivariate model:

Axy, _ -1 1 )’ <x1z—1) <elt
<Ax2t) B ( 0 )('_1 + J/n{tZ [n7] + 1}/ \xp0-1 * 62t>,

where {e},,e,,}’ are i.i.d. and standard normal with covariance p.
Monte Carlo experiments are based on a sample size of 250 and 3,000 repli-
cations for each d = 0,2,...,30, and p = 0.2. The break point 7 is assumed to be
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TaBLE 3. Asymptotic critical values for Sup-LM#, Sup-LMP«

T 10% 5% 1%  10% 5% 1%  10% 5% 1%
p=2r=1
Sup-LM? Sup-LM% Sup-LM5%
25 692 838 11.80 688 834 11.69 7.7 863 1223
A5 764 9.0 1251  7.62  9.09 1258 805 946 1293
05 861 995 1328 854 1004 1356 9.04 10.52 13.92
Sup-LM#* Sup-LM5* Sup-LM5*
25 1152 1335 1699 1144 1326 17.09 1171 1346 17.35
A5 1242 1419 18.07 1246 1423 1829 12.64 1437 1837
05 1357 1523 1947 1358 1522 19.67 13.80 1555 19.65
p=3r=1
Sup-LM? Sup-LM?% Sup-LM%
25 975 11.60 1527 971 1146 1524 993 11.67 14.99
15 1072 1250 16.09 1071 1252 1624  10.85 12.55 16.49
05 1175 1330 1691 1171 1345 1717 1193 13.54 17.56
Sup-LM?* Sup-LM5* Sup-LM%&*
25 1543 17.61 2238 1534 1740 2193 1554 17.63 21.60
15 1665 18.60 2333 1652 18.65 2329 1674 18.71 22.82
05 17.86 19.98 2447 17.82 1994 2430 18.00 20.02 24.01
p=3r=2
Sup-LM{ Sup-LM5 Sup-LM%
25 968 1141 1523 954 1122 1511 10.05 11.80 15.33
15 1057 1218 1624 1044 12.03 1590 10.98 12.78  16.06
05 1158 1329 17.42 1150 1327 17.07 1207 13.67 17.11
Sup-LM?“ Sup-LM5* Sup-LM5*
25 2056 2280 27.41 2047 2271 2728 20.53 2286 27.56
15 2178 2396 29.09 21.65 23.87 28.64 21.88 2422 28.72
05 2315 2535 3070 23.02 2530 3028 2332 2536 30.32
p=4r=1
Sup-LM# Sup-LM% Sup-LM%
25 1209 1393 1801 1202 13.75 17.62 12.09 13.77 17.42
A5 1298 1493 1877 13.02 1478 18.64 13.12 14.94 18.24
05 1423 1608 2006 1420 1584 1970 1421 16.04 19.43
Sup-LM#* Sup-LM5* Sup-LM5*
25 19.00 21.26 2614 1899 21.13 2591 18.97 21.13  26.01
A5 2024 2245 2738 2016 2246 2712 20.19 2245 27.06
05 2157 2377 2842 2152 23.73 27.83 21.53 23.66 28.23

(continued)
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p=4r=2
Sup-LM# Sup-LM% Sup-LM%
25 1402 1582 2026 1393 1591 19.97 1429 1626 20.42
A5 1504 17.08 2090 1494 1692 21.07 1541 17.19 21.53
05 1618 1820 2171 1616 17.99 2214 1646 1830 2222
Sup-LM{® Sup-LM5* Sup-LM5*
25 2664 2920 3531 2666 29.17 3471 2680 2936 34.65
15 2803 30.58 3610 28.05 3036 3552 28.12 3047 3587
05 29.60 32.16 37.12 2944 31.85 37.14 2957 3193 37.37
p=4r=3
Sup-LMf{ Sup-LM5 Sup-LM?%
25 1199 1373 17.54  12.02 13.88 17.62 1230 14.09 17.83
A5 1296 1479  18.50 12.98 1473 1844 1334 1518 18.72
05 1411 1583 1974 1419 1583 1936 1456 1647 2020
Sup-LM?* Sup-LM&* Sup-LM%*
25 3101 3359 3923 3085 3343 3951 31.06 33.74 39.89
A5 3231 3502 4031 3229 3479 4092 3256 35.17  40.65
05 3420 3694 4191 3411 3673 4218 3441 3692 4266
p=5r=1
Sup—LMf3 Sup—LMf Sup-LMf
25 1408 1606 2032 1402 1606 19.84 14.18 16.05 20.43
A5 1510 17.21 2140 1505 1697 2113 1527 17.13 2145
05 1628 1820 22.13 1622 18.02 21.98 1634 1841 22.11
Sup-LM?* Sup-LM%* Sup-LM%*
25 2235 2474 2937 2228 2474 2951 2234 2477 3001
15 2359 2596 3038 2353 2591 3068 2352 2611 31.07
05 2493 2723 3173 2498 27.00 31.60 2500 2729 32.13
p=5r=2
Sup-LM? Sup-LM5 Sup-LM#
25 17.65 19.68 2425 1772 19.69 2476 17.95 20.06 24.89
15 1885 2093 2537 18.80 20.83 2563 19.10 21.19 25.76
05 2005 2212 2633 2005 22.04 2654 2038 2244 26.69
Sup-LM?® Sup-LM5“ Sup-LM%“
25 3263 3539 4140 3266 3550 41.83 32.81 3568 41.24
A5 3412 3687 4279 3414 3680 43.06 34.28 37.16 4257
05 3577 3842 4418 3572 3835 44.08 3595 3851 44.09

(continued)
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p=5r=3
Sup-LM? Sup-LM% Sup-LM%
25 1776 1991 2430 17.56 19.65 2409 17.82 19.92 24.69
15 1897 21.14 2553 1877 2078 2490 18.96 21.13 2594
05 2018 2229 2647 1999 2208 26.16 2043 22.53 26.71
Sup-LM?® Sup-LM5* Sup-LM5*
25 3975 42.68 4895 39.66 42.62 4891 39.88 4272 48.68
15 4133 4420 5020 4122 4420 4994 4140 4419 5023
05 4297 4591 5191 43.03 4572 5149 4312 4587 51.52
p=5r=4
Sup-LM# Sup-LM5 Sup-LM#
25 1382 1573 1994 1391 1586 1997 1452 1631 20.23
15 1493 1681 2074 1500 1692 21.11 1558 17.37 21.30
05 1617 18.04 22.10 1621 18.18 21.88 1662 18.62 22.72
Sup-LM#* Sup-LM5“ Sup-LM5“
25 4341 4670 5245 4348 4658 5269 43.56 46.82 5270
15 4513  48.14 5430 4519 48.17 5452 4544 4848 5424
05 4716 50.14 5633 47.04 5033 5696 47.59 5040 56.41
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uniformly distributed over [.15,.85]. The chi-square test, which is based on the
true break point, rejects 88.0% of the null hypothesis at the 5% size when the
local alternative dis 20. Ave-LM, Exp-LM, and Sup-LM tests reject 81.3%, 83.1%,
and 82.6%, respectively.

5.2. Size Distortion
Suppose we have the following local alternative hypothesis:
H: €, = g/vmn,

where €, = € in equation (12).
Figure 2 shows the size distortion of the tests for structural change of the
cointegrating vector from the following bivariate model:

(Ax1,> ('—1 + é/\lﬁ{t = [n*r] + 1})( 1 )I (xlt_l) <81,>
= + :
Axy, 0 =1/ \x3,—4 €

Monte Carlo experiments are based on the same parameters as in Section 5.1
except € = 0,1,2,...,10. Also, 7 is uniformly distributed over [.15,.85]. The
chi-square test at the 5% size rejects 5.8% of the null hypothesis at € = 5. Ave-
LM, Exp-LM, and Sup-LM tests reject 5.8%, 6.1%, and 6.2%, respectively. Hence,

Rejection Frequency (%)

Ave-LM
— = Exp—LM
....... Sup—LM
- = = Chi-SQ

o . i I i I A I 1 A

o 1 2 3 4 5 6 7 8 9 10

Local Alternative: e

FIGURE 2. Size distortion (N = 250, 5% size).
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small sample experiments show that the Exp-LM test has more power than other
optimal tests whereas the Ave-LM test has smaller size distortion.

6. EMPIRICAL APPLICATION

In this section, our stability tests are applied to the U.S. money demand equation
for the period 1900-1985. Specifically, we test structural change of the income
elasticity and the interest semielasticity of money demand. This question was
posed by Lucas (1988). Although the instability of the postwar U.S. money de-
mand equation has been raised by many authors, Lucas was interested in a stable
equilibrium relationship over a century.

We use the data set that was constructed by Lucas (1988): m is M1, p the price
index, y real income, and r the short-run interest rate. All variables are in loga-
rithms except the short-run interest rate. We assume that the change point is
known to lie in [0.15,0.85]. All empirical work is done in Gauss, and it is repli-
cable with any software that is capable of matrix operations.’

Because the real money balances and real income contain growth terms, the
model of trend in the DGP is used. The short-run interest rate is regarded as
integrated because the augmented Dickey—Fuller test cannot reject the unit root
hypothesis. Johansen’s cointegration test rejects the null hypothesis of no cointe-
gration at each VAR lag length from 1 to 9, which suggests a long-run cointe-
grating relationship of the money demand equation.

Johansen’s test is also applied to real income and the interest rate, but the null
hypothesis of no cointegration is maintained at each VAR lag length. This result
supports the normalization condition that is made with respect to the real money
balances. When the lag length picked is 3 by Akaike information criterion, the
long-run relationship and adjustment coefficients are estimated as follows:

A(m — p), _-24(.08) 1 " [(m — p)—
Ayt = - -07(.16) _0-99(.03) Yi-1 + .. )
Ar, —3.81(12 Aoy -1

LR(H,: rank(IT) = 0) = 32.65%,
LR(Hy: rank(IT) = 1) = 4.58,
LR(Hy: rank(IT) = 2) = 1.28,
Ave-LM? = 159,  Exp-LM” = 1.20, Sup-LM”? = 6.87,
Ave-LM? = 6.16*,  Exp-LM? = 5.16*,  Sup-LMZ = 13.06,
Ave-LM?® =776,  Exp-LM?* =550, Sup-LM?* = 13.82,

where standard errors are in parentheses and * denotes 5% significant.
Our tests cannot reject the stability of the cointegrating vector B at the 5% size.
In Figure 3a, LM statistics show some spikes in the 1930’s, but they are not
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significant. Hence, the U.S. money demand equation has a stable long-run rela-
tionship for the period 1900-1985. This result corresponds to the conclusions of
Lucas (1988) and Stock and Watson( 1993).

On the other hand, Ave-LM and Exp-LM tests reject the stability of the adjust-
ment vectors a at the 5% size whereas the Sup-LM test does not. Figure 3b shows
that LM statistics are close to the 5% critical value of the Sup-LM test after the
1950’s. Lucas (1988) indicates that the real money balances do not grow at the
same rate as real income after the 1950’s, which may affect the stability of «
because the change in the growth rate lowers the speed of adjustment to the
equilibrium.

7. CONCLUDING REMARKS

This paper has proposed new tests for structural change of the cointegrating vec-
tor and the adjustment vector in the ECM with an unknown change point. Tests
for structural change of the cointegrating vector have nonstandard asymptotic
distributions that are different from those found by Andrews and Ploberger (1994).
In contrast, tests for structural change of the adjustment vector have the same
distributions that have been found for models with stationary variables. We have
also shown that detrending methods change the distribution theory of the tests for
structural change of the cointegrating vector.

The crucial condition made in this paper is the normalization of the cointegra-
tion space. Without this condition, the cointegrating vector cannot be identified
even though the cointegration space can be identified. It is important to identify
the cointegrating vector if we wish to test its stability. The normalization condi-
tion is often useful in empirical studies and has been used by many authors.

NOTE

1. A Gauss program can be requested from the author.
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APPENDIX A: MATHEMATICAL PROOFS

In the Appendix, we denote |All, = (E|A?])"4, |A| = (ir A’A) /%, sup,e,+0,,(1) = 0,(1), and
sup,e.+ 0,,(1) = 0,(1). We also denote Z, = (w;, z;)’, where z, = (Ax/,...,Ax;;+2)". We
use the following lemmas. (For the proof of Lemma 8, see Hall and Heyde, 1980, p. 143; for
the proof of Lemma 9, see Andrews, 1988, p. 460, and Andrews, 1993, pp. 846-847).

LEMMA 8. (Hall and Heyde, 1980). If{z,} is uniformly square integrable, then

supn~12|z,| =P 0.
1=n

LEMMA 9. (Andrews, 1988, 1993). If{v,} is a uniformly integrable L'-mixingale, then

s
2 U
=1

s

n'Sul-0

=

and supn”! —P 0.

s=n

E sup

s=n

Proof of Lemma 1. By the invariance principle of Phillips and Durlauf (1986).

[ns]
n=V2 3 u = W(s) = BM(3).
t=1

n~ Vx5 = C(1)W(s). A1)

We need to show

[ns]
Xns) — C(1) :=21 u,| > e) = P( sup n '/2|<I>(L)u[,,s]| > e> 0.

s€[0,1]

P( sup n~!/?
s€[0,1]

If {®(L)u,} is uniformly square integrable, we can apply Lemma 8.

I®L)ul, = El illuellz = E E [Cllluel2 = 2 k| Cil(Elug|*)"? < co.

In the same way, we can show |Ax, |, < oo and |w,], < oo if 24 k|Ci| < oo,
Supgee|0] < 0o, and E|uy|? < oo. Thus, sup,<,n~/2|Z,| =” 0.

[ns]

2w, =y ()W), (A.2)

=1
sP( sap n~12|y’ <I>1(L)u[,,5]|>e>—>0
s€[0,1]

We need to show

[ns] [ns]

EW —’yq)(l)Zu,

=

P( sup n”1/?
s€[0,1]

where @, (L) = (®(L) — ®(1))/(1 — L). Here 3=, k?|Ci| < o0, supgee|f] < oo, and
E|ug|? < oo imply


mailto:n-l/2y'@,(~)u[,ll>a)+0
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o] o] o]
ly'®1(L)ul, = suplyl| X X (k—j—1)Ceu|| <suply| D k|Celluolz < 0.
Y J=0k=j+2 2 Y k=1

n"Y2R15,(1) = C()W(s) = Wiy(s). (A3)
We need to show SUpse(o,1],rer* ln_l/z E[nr] x,z,(EEﬁﬁ] tht)_ Z[m']l —P 0.
If we can show thatv, = {z,z, — E (zozo)} is a uniformly integrable L!-mixingale, we
can apply Lemma 9 to show sup,e,+n IIE,_I v;| = 0. We denote vy, = {Ax,Ax; —
E(AxoAxg)}, var = {w,w; — E(wowo)}, and vs, = {Ax,w] — E(Axowj)}.

IE@ | Fiem)li =

__2 Cj(uf—jut’—j )Cl + E 2 o “t—jur ka

k#j j,k=m

= 2 IGPUuol3 + =) + X E Gl Cellluol3
=

k#j j k=
<) 2
Sleuoll%(E leI> —0 asm—oo
k=m

because 34— |Ci| < oo. Thus, v, is an L'-mixingale.

We can also show that |E(vy|F,—,,)|; = 0 and |E(vs|Fi—p)|i = 0 as m — oo if
D=1 k|Ci| < 00 and supgee|6| < c0. Because |[z,[|2 < 00, (v{;,V5;,03,)’ is uniformly inte-
grable. From Lemma 9, we have sup,e,«n~ IZ,_I Z:.Z2i — E(Z0Z0))| =7 0.

[n7]
sup n”! Dxiz = 0,(1). (A4)
t=1

reT*

[n7] [n7] T
R Y xwl =0T (o + Ax)w] = f C()Waw '®(1)'y + 1A,
=1 r=1 . 0

where A; = E(Axgwg) + E(now]), and n, = ®(L)u,.
[n7] [n7]

U Ax =D (K + Axp + e+ Ax)AX]
=1 r=1

=>f C()Waw’'C(1)" + Ay,
0

where Ay; = E(AxpAxy + -+ + Ax;Axg) + E(noAxi) fori = 0,1,...,1 — 2.
Because sup,eqo, 117~ /| z[,53] =7 0, we have

sup|n -7 0. u

85T

[nt] [n7] -1
! E x;z,( ) z;Zi) n V2200
=1

Proof of Lemma 2. Because we have n~ /2R 5(,1(1) = Wa(s), and {1} is a martingale
difference sequence, we can apply the weak convergence theorem by Hansen (1992b) for
the proof of (21). (22) holds by the continuous mapping theorem (CMT).
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By Lemma 9,

[nr] [n7] [n7]
n~! 2 Ry (T)Ro(7) = n”! 2 Wi Wiy — n! 21 Wi—1Zi-1
=1 =1 1=

[nr] -1 [nr]
(n_l 2 Zz—lz;—l) n! E Z—1Wi-1
t=1 =1
—P TE(wowp) — TE(wo26) E(2020)™'E(zowo) = 70
uniformly in 7 € 7% n
LEMMA 10. (Johansen, 1988).

1 -1 1
n(g - B)= <J; W2W2'> J; WodWi(a'S7 )7,
VAvec(@— a) = 32 ® @ HK(1),

where

[ns]
nV2g'3"1 2 U,
=1

[ns] Wi (s)
n12C,(1) X u, = | Wa(s)
] a K(s)
n~V? zl 7Y% u, ® Ry, (1))
a3 la 0 0
= BM 0 C,(H2C5(1) 0 s
0 0 I®0

where Ry, (1) = wioq — 2=y w121 (2= Z-12-1) " 21

Proof of Lemma 10. The distribution theory of § has been found by Johansen (1988)
in the ECM with a general normalization condition. Hence, Lemma 10 is a special case of
Johansen (1988).

Because the restricted MLE satisfies equations (7)—(9),

(a'i—l ®n! 21 R,z,(l)a;> vec(l) = 0,
t=
and
(i‘l ®n~12 :Zn:l ﬁz,(l)ﬁ{) vec(I) = 0.
From the Taylor series expansion,

(a’E_' ®n! é Rlz,(l)u,’) vec(I)
t=1

’

( nvec(B - B)

yavec(@ — a)’

) = (-H,E)" -
<2_‘ ®n712 3 Rzr(l)u,’> vec(l)
=1




STRUCTURAL CHANGE IN COINTEGRATED SYSTEMS 255

where 6* € [8,6],
a2l @n718,(1) —H,,(0)
~Hizn(60) '® Szzn(1)> ’
and —Hy2,(0) = n""*(@'S7' @ S12,(1)) = n ' U@ n™ "2 . Ry, (1)u; 27" ) A, where A

is a rotation of the identity matrix satisfying A’ = 9 vec(a)/d vec(a’).
We will show Si,,(1) = 0,(1) in (A.5). Because 8* —* 6 and H;,,(6) —* 0,

nvec(B — B) )
(«/ﬁvec(& - a)

(@2 la@n'S,(1))7! (0'2_1 ®n™! i Rmﬂ)“;’) vec(I) + 0,(1)
=1

—H, (0) = (

(&7 ® Sxa(1) (Y‘ ®n~1? E Rz,(l)ut’) vec(I) + 0,(1)
=1

1 -1 £l
((a'E“‘a)'W’E”‘@(L W2W2’) fOW2dW’>veC(1)

E2® 07 HK(1)
We will show n~ 2 S1(3-172"y, ® R,,(1)) = K(s) for the general case in (A.7).
Next, we show that E(W, (s)K(s)') = 0.

lim E(n_‘a’z—l 2 U, E w22 ® R'z:(”))
=1 t=1

n—oo

= lim E<n“101’2'l é (E(ueu)|Frmy)27V2 ®R'2:(1)))
n—o0 =1
=a'37' (32 ® E(Ry%(1)) = 0,

where E(Ryo(1)) = E(w) — E(woz0)E(z020) ™' E(20).
In the same way, we can show E(W,(s)K(s)') = 0.

Proof of Theorem 2. If we denote Ro,(7) = Ax, — SV Ax, 2 (S 2o 22!
Z,-1, then the model can be written

RO:(T) = a'y’th(T) + u,(7),

where u,(r) = u, — SV w2 (S0 21 20-0) 20y

[n7] T T 1 -1 1
I’l—l 2 R]z,(T)ﬁ[, =] j Wdei - f Wsz’(f Wsz’) f Wdei. (A.S)
r=1 0 0 0 0

The estimated residual satisfies

[n7] [n7] -1
i, = u,— (@— a)¥'Ry,(7) — a(B — B)Ri(7) — zl '4:2:'—1<§l Z:—l&'—l) Zi—1-
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Because

[n7] [n7] [nr] -1
Siza(™) =07 D Wi — 07 Y X120 (n_l > Zx—12;—1)
=1 Sr=1 =1
[n7] _
nTt Y w7 S ,(nn(B - B),
=1
we can show Si,,(7) = 0,,(1) by using (A.6) and Lemma 9.
[n7] [n7] ~
U R ()i = n7t Y, Rig(T)u; — n7'S11,(m)n(B — B’
=1 =1
= n7128,,(r)VA@ — a)’

[n7]
=n"! ;1 Riz (1) u; = n7'S11,(m)n(B — B)a’ + 0,.(1)

T T 1 -1
0 0 0

1
szdW'E_la(a'E*]a)_la’,
0

[n7] [n7]
nT' Y R (M) = n7t Y R () S @@ S @) ?
=1 =1

T T 1 -1 1
= f W, dB] — f W2W2’<j W2W2’> f W, dB]
0 0 0 0

because & — @ = 0,(1) and & — 3. = 0,(1).
Because n7181,(1) = [o WoW; by Lemma 2,

T T 1 -1 T
Viin(7) = f W, W, — f W, W, < f W2W2’) f W, W;. (A.6)
0 0 0 0

Because (C,(1)3C5(1)) /2 is nonsingular, LM?(r) = LM¥#(7) by the CMT. n
Proof of Theorem 3. Let ¢,(7) = 32y, ® Ry, (7).

[n7]
n~'2 Y e,(r) = K(r) = BM(I ® Q). (A7)
t=1

Lete;, = 2_1/2lut ® w,—1 and e, = Eﬂ/z'”t ® z-1-
Because {e;,|F;} and {e,,|F;} are martingale difference sequences, and E|Zo|* < oo,
[n7]
~1/2
n e
t=21 N (Kl (T)
=

ford Ky(7)
n-12 2 €yt
=1

) = BM(I ® TE(%0%0))-
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Because ¢,(7) = ey, — ([ ® SV w1201 (S00 2,-12-1) " Jeass

[n7]
n~V? 2 e,(1) = Ki(1) — [I ® E(woz0)E(z026) ' 1Ka(7) = K(r)

=BM(I @ 7Q).
[n7] [n7]
n~V? E Ry(m)u; = n~172 2 Ry (T)ug + 0,,(1). (A.8)

Because W, = w, + (8 — B)'x2,

[n7] [n7] - [n7]
nV2 Y W =02 Y w020 (B = B)Yn T Y Xy
t=1 =1 =1
) [n7]
= n_l/ 2 wt—lu; + op‘r(l)’
=1
[nr] [n] B [n7]
Y Wz =T Y weeizie =T in(B = BT Y xgm2iy
=1 =1 =1
[n7]
=n"' D wmzier + 0,(1).
=1
[n7]
S224(7) = 071 X, Ry (1) R(7) + 0,,(1). (A9)
=1

Ry (1) = Ry (1) + n(B—B)'n "x3-1 —n(B— B)'n"!
{n7] [n7] -1
D oz X zmizien ) nTlze
=1 =1

[n7]
V23§75, ® Ry(1)) = K(1) — 7K(1). (A.10)
=1

[n7] [n7]

n”12 2 R2 (r)a; = n~V2 2 Rz,('r)u, Soon(T)IVH(@ — @)’

0728, (B ~ Par

[n7]

n"V2 3 Ro(1)uf = Sppn(TIVR(@ — @)’ + 0,,(1),
=1

SO

[n7] © [nr]
n—1/2 2 (2 1/2' i ® R2:(7')) = n—1/2 2 (2—1/2’ut ®R2,(T))
=1 =

[n7]
- ( Y @n! 2 th(T)th('r))VTLveC(a - a)
+ 0,.(1)

=K@ - E" @r0)E"®eHK1)
= K(r) — 7K(1).
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Because szn(T) = Szg,,(’l') - Szgn(T)ngn(l)_]S22n(T) —P T(l - T)Q umformly intT €

T

[n7]
(I ® Vyu() V2012 ;1 E Vi, @ Ry—1 (1) = (r (1 = 1) V2[J(r) — I (1)].

Thus, LM2(7) = 1/7(1 — 1) (J(7) — 7J(Q1))' (J(7) — 7J(1)). |

Proof of Lemma 3. The representation theorem in the model with deterministic
trends is

Ax, = C(L)(p + u,),

t
=po+ C) D u +®(L)u, ifalp=0,
i=1

and

t
X =po+ CWut + CA) D u; + ®(L)u, ifau+0.

i=1

Using Lemmas 8 and 9,

[n7] [n7] -1
n_l/zRTt(T) = nnl/zxt— - n7l2 2 X121t 1(2 Zi-1212 Z1

[n7] [n7] -1
nV2x =TV Y a2 0 8, D Stz 8, ) Baziy
=1 =1

1 [nT
=V, =2 [—n;] 3 5im1 + 0,0(1)

[n7]
xlo—l - n_1/2 ] 2 xt 1 + 0p7(1)7

n-1/2

where 8, ! = diag(1,v7,v7,...), and x° = C(1)Zi=; u,.
Thus, n™V2R}5,(1) = C(1)W — 1/7C5(1) fg W. |

Proof of Lemma 6. Since demeaning cannot remove a linear trend in the DGP, the
projected series contains the linear trend. If we use Lemmas 8 and 9, then

1 [l
n~V2R(r) = n"V2%x2, — n~ /2 o] > xp + vav(t/n — 7/2) + 0,,(1).
=1
Thus,
1720 Ry (1) 2 v C(DW*(s,7), and  n~'w'Rigp(7) = v'v(s — 7/2). u

Proof of Theorem 4. If we denote Rj, (1) = Ax, — S Ax, 2 (S 2 200 )1
z;-1, then the model can be written

Roi(m) = ay'Rii(7) + u,(7),
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n-r]

where u,(1) = u, — ,z,_l(Z,_Tl z¥.12}"1) "'z} ;. The estimated residual satisfies

fi, = u, — (@ — @)¥'Ri(r) — a(B — B)'Rizlr)
[n7] [n7] -1
- 2 uzily 2 AT HARY) IS SR
=1 =1
[n7] [n7] B
n™t Y RN E = n" Y Rbalmu — n7'Sfi(r)n(B — B)a’
t=1 =1
— 0TSy (TNR(@ ~ )

[n7]
=n"V27 Rb(®u; — n7 'St (1)n(B — B)a’ + 0,.(1)
=1

because S{2,(7) = 0,,(1), and vr(a@ — @)’ = O,(1).
[n7] [n7]

nTL Y R (18] = n7' Y Ripu()v, — n7'SH,(1)n(B — B)(@'27'a) + 0,,(1)
=1 =1

[n7] n
=n"' 3 Riz(m)v, — n7 1S, (1) (n 1S, (1) 7' X R (D]
=1 =1

+ 0,.(1).
We define A = (v;,n""?v) and D = diag((v|.C,(1)2C}(1)v,)"/%,v'v). By using
Lemma 6, we have the following results:
[n7] T
A'n~' Y Rip(r)v; = D’ J By(s,7) dBi(s),
=1 0
and
[n7] T _
n2A’ 2 Ri2/(7)R15(T)A =D’ f B, (s,7)Bj(s,7) ds D.
=1 0

Because D is nonsingular, LM?*(r) = LM} (r) by the CMT. u
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